Ring-selective functionalisation of *N,N'*-diarylureas by regioselective *N*-alkylation and directed *ortho*-metallation

Jonathan Clayden, Hazel Turner, Mark Pickworth and Thomas Adler

SUPPLEMENTARY INFORMATION

p. 1-21 Experimental data

p. 22-94 ¹H and ¹³C NMR spectra

General Procedure A - Preparation of Ureas 7

The aniline **6** (1 equiv.) was added to a solution of isocyanate (1 equiv.) in anhydrous CH_2Cl_2 in one portion. The solution was stirred for 18 hours at room temperature under a nitrogen atmosphere. The precipitate was filtered, washed with cold CH_2Cl_2 and dried under reduced pressure. Further purification was unnecessary.

(a modification of the method of Beaver, D. J.; Roman, D. P.; Stoffel, P. J. J. Org. Chem. 1959, 24, 1676)

General Procedure B – Methylation of Ureas 7

A solution of the urea (1 equiv.) in THF was slowly added to a suspension of NaH (60% in mineral oil, 1.2 equiv.) in anhydrous THF under an atmosphere of nitrogen. The reaction mixture was stirred for 15 minutes. Methyl iodide (1.5 equiv.) was added and the solution was stirred for a further 18 hours. Water was added and the mixture was extracted with diethyl ether. The combined ethereal layers were dried over MgSO₄, filtered and concentrated under reduced pressure to give a residue further purified by flash chromatography on silica.

General Procedure C – Lithiation of Ureas 11

sec-Butyllithium (2.5 equiv of 1.3 M solution in cyclohexane) was added to a stirred solution of the urea **11** in dry THF under nitrogen at -78° C. After 30 minutes the electrophile was added to the yellow solution. The reaction was stirred for a further 2

Clayden et al.

hours and then allowed to warm slowly to room temperature. Saturated ammonium chloride solution was added and the organic phase separated. The aqueous layer was extracted with diethyl ether and the combined organic layers were dried over MgSO₄, filtered and evaporated under reduced pressure to give a residue which was purified by flash chromatography on silica.

1-(2-Fluorophenyl)-3-phenylurea **7a**.¹ —Phenyl isocyanate (5.36 g, 4.92 ml, 45.0 mmol) was dissolved in DCM (100 ml) at room temperature and 2-fluoroaniline **6a** (5.00 g, 4.34 ml, 1 eq) was added. After 1 h a white solid began to settle out. After stirring for 1 d, the white precipitate was filtered and washed with cold CH₂Cl₂ (250 ml). Drying under high vacuum gave 8.59 g (37.3 mmol, 82.9 %) of the desired product. ¹H NMR (300 MHz, DMSO): δ = 9.09 (s, 1 H, N-H_F), 8.57 (s, 1 H, N-H), 8.19 (dt, ³J=8.3 Hz, ⁴J= 1.6 Hz, 1 H, H₅), 7.48 (d, ³J=7.5 Hz, 2 H, H₁₁, H₁₅), 7.32 (t, ³J= 7.6 Hz, 2 H, H₁₂, H₁₄), 7.24 (m_c, 1 H, H₄?), 7.16 (t, ³J= 7.7 Hz, 1 H, H₁₃), 7.02 (m_c, 2 H, H₃, H₅). ¹³C NMR (75 MHz, DMSO): δ = 115.7 (d, 19.0 Hz), 118.81 (C₁₁, C₁₅), 121.20, 122.78, 123.1 (d, 7.5 Hz), 125.21, 125.26, 128.3 (d, 10.3 Hz), 129.6 (C₁₂, C₁₄), (N-Ar), (N-ArF), (C-F), (C=O): 140.16, 152.90, 154.28, 151.09.

1-(2-Chlorophenyl)-3-phenylurea **7b**.¹ —Phenyl isocyanate (3.20 g, 2.94 ml, 26.9 mmol) was dissolved in DCM (100 ml) at room temperature and 2-chloroaniline **6b** (3.43 g, 2.83 ml, 1 eq) was added in one portion. After 3 h a white solid settled out. The precipitate was filtered and washed with cold CH₂Cl₂ (200 ml). Drying under high vacuum afforded 4.70 g (19.0 mmol, 70.9 %). ¹H NMR (300 MHz, DMSO): δ = 7.03 (m_c, 2 H, Ar-H), 7.32 (m_c, 3 H, Ar-H), 7.49 (m_c, 3 H, Ar-H), 8.20 (dd, ³J=8.3 Hz, ⁴J=1.6 Hz, 1 H, H₆), 8.34 (s, 1 H, N-H), 9.44 (s, 1 H, N-H_{Cl}). ¹³C NMR (75 MHz, DMSO): δ = 118.91 (C₁₁, C₁₅), 121.99 (C₆), 122.60 (Cl-Ar), 122.84 (C₁₃), 123.96 (C₄), 128.29 (C₅), 129.62 (C₁₂, C₁₄), 129.92 (C₃), 136.72 (N-ArCl), 140.18 (N-Ar), 152.85 (C=O).

1-(2-Bromophenyl)-3-phenylurea **7c**.¹ —Phenyl isocyanate (2.08 g, 1.91 ml, 17.4 mmol) was dissolved in DCM (100 ml) at room temperature and 2-bromoaniline **6c** (3.00 g, 1 eq) was added in one portion. After stirring for 4 days the reaction mixture was filtered and a white solid isolated. Washing with cold CH_2Cl_2 (200 ml) and

drying under high vacuum afforded 3.56 g (12.2 mmol, 70.3 %). ¹H NMR (300 MHz, DMSO): $\delta = 7.00$ (m_c, 2 H, H₃, H₁₃), 7.34 (m_c, 3 H, H₅, H₁₂, H₁₄), 7.50 (m_c, 2 H, H₁₁, H₁₅), 7.63 (dd, ³J=8.0 Hz, ⁴J=1.5 Hz, 1 H, H₃), 8.10 (dd, ³J=8.3 Hz, ⁴J=1.6 Hz , 1 H, H₆), 8.16 (s, 1 H, N-H), 9.48 (s, 1 H, N-H_{Br}). ¹³C NMR (75 MHz, DMSO): $\delta = 113.72$ (C-Br), 118.92 (C₁₁, C₁₅), 122.83 (C₆), 122.92 (C₁₃), 124, 75 (C₄), 128.79 (C₅), 129.61 (C₁₂, C₁₄), 133.20 (C₃), 137.81 (N-Ar), 140.21 (N-Ar_{Br}), 152.89 (C=O).

1-(2-Iodophenyl)-3-phenylurea **7d**.¹ —2-Iodoaniline **6d** (1.63 g, 1.50 ml, 13.7 mmol) was added in one portion to a solution of phenyl isocyanate in CH₂Cl₂ (100 ml). After 72 h a brownish precipitate had been formed. The settlings were filtered and washed with cold CH₂Cl₂ (200 ml). Drying under high vacuum afforded 3.76g (11.1 mmol, 81.2 %) of the wished product as a white brownish solid. ¹H NMR (300 MHz, DMSO): $\delta = 6.86$ (t, ³J=7.4 Hz ,1 H, H₄), 7.00 (t, ³J=7.3 Hz ,1 H, H₁₃), 7.34 (m_c, 3 H, H₅, H₁₂, H₁₄); H₃, H₆, (H₁₁, H₁₅): 7.50 (d, ³J= 7.9 Hz, 2 H), 7.86 (d, ³J= 8.0 Hz, 2 H); 7.91 (s, 1 H, N-H), 9.45 (s, 1 H, N-H_I). ¹³C NMR (75 MHz, DMSO): $\delta = 92.08$ (C-I), 118.90 (C₁₁, C₁₅), (C₆), (C₁₃): 122.73, 123.80, 125.77 (C₄), 129.30 (C₅), 129.59 (C₁₂, C₁₄), 139.66 (C₃), (Ar-N), (Ar-N_I): 140.34, 140.57; 153.10 (C=O).

1-(2-Methylphenyl)-3-phenylurea **7e**.² —Phenyl isocyanate (3.20 g, 2.94 ml, 26.9 mmol) was dissolved in DCM (100 ml) at room temperature and *o*-toluidine **6e** (2.88 g, 2.91 ml, 1 eq) was added in one portion. After 5 min. a white solid began to settle out. After stirring for 12 h, the white precipitate was filtered and washed with cold CH₂Cl₂ (250 ml). Drying under high vacuum afforded 5.81 g (25.7 mmol, 95.5 %) of the desired product as a white solid. ¹H NMR (300 MHz, DMSO): $\delta = 2.27$ (s, 3 H, CH₃); (H₄), (H₁₃), (H₃, H₅): 6.97 (m_c, 2 H), 7.17 (m_c, 2 H); 7.31 (m_c, 2 H, H₁₂, H₁₄), 7.50 (d, ³J= 7.5 Hz, 2 H, H₁₁, H₁₅), 7.88 (d, ³J= 8.1 Hz, 1 H, H₆); (N-H_{Me}), (N-H): 7.94 (s, 1 H), 9.04 (s, 1 H). ¹³C NMR (75 MHz, DMSO): $\delta = 18.63$ (CH₃), 118.71 (C₁₁, C₁₅), 121.72 (C₆), (C₁₃) (C₄): 122.41, 123.36; 126.88 (C₅), 128.17 (C-Me), 129.55 (C₁₂, C₁₄), 130.90 (C₃); (C-N), (C-N_{Me}): 138.14, 140.62; 153.38 (C=O).

1-(2-Ethylphenyl)-3-phenylurea **7f**.² —Phenyl isocyanate (3.20 g, 2.94 ml, 26.9 mmol) was dissolved in DCM (100 ml) at room temperature and 2-ethylaniline **6f** (3.26 g, 3.33 ml, 1 eq) was added in one portion. After stirring for 18 h, the white

precipitate was filtered and washed with cold CH₂Cl₂ (250 ml). Drying under high vacuum afforded 6.09 g (25.5 mmol, 94.3 %) of the desired product as a white solid. ¹H NMR (300 MHz, DMSO): $\delta = 1.20$ (t, ³J=7.5 Hz , 3 H, CH₃), 2.63 (q, ³J=7.5 Hz, 2 H, CH₂); (H₁₃), (H₄),(H₃, H₅): 7.0 (m_c, 2 H), 7.18 (m_c, 2 H); 7.30 (m_c, 2 H, H₁₂, H₁₄), 7.49 (m_c, 2 H, H₁₁, H₁₅), 7.82 (dd, ³J=7.9 Hz, ⁴J=1.2 Hz, 1 H, H₆), (N-H),(N-H_{Et}): 7.92 (s, 1 H), 9.03 (s, 1 H). ¹³C NMR (75 MHz, DMSO): $\delta = 15.02$ (-CH₃), 24.52 (CH₂), 118.68 (C₁₁, C₁₅), 122.39 (C₆), 122.77 (C₄ or C₁₃), 123.88 (C₁₃ or C₄), 126.77 (C₅), 129.13 (C₃), 129.55 (C₁₂, C₁₄), 134.45 (C-Et); (C-N), (C-N_{Et}): 137.25, 140.65; 153.58 (C=O).

l-(2-*Isopropylphenyl*)-*3*-*phenylurea* **7g**. —Phenyl isocyanate (2.50 g, 2.29 ml, 21.0 mmol) was dissolved in DCM (100 ml) at room temperature and 2-isopropyl aniline **6g** (2.84 g, 2.97 ml, 1 eq) was added in one portion. After stirring for 18 h, the white precipitate was filtered and washed with cold CH₂Cl₂ (200 ml). Drying under high vacuum afforded 3.48 g (13.7 mmol, 65.2 %) of the desired product as a white solid. ¹H NMR (300 MHz, DMSO): $\delta = 1.22$ (d, ³J=6.8 Hz, 6 H, 2×CH₃), 3.18 (sept, ³J=6.8 Hz, 1 H, H_{iso}), 6.98 (m_c, 1 H, H₄), 7.13 (m_c, 2 H, H₁₃, H₅), 7.30 (m_c, 3 H, H₁₂, H₁₄, H₃), 7.49 (m_c, 2 H, H₁₁, H₁₅), 7.70 (dd, ³J=7.9 Hz, ⁴J=1.4 Hz, 1 H, H₆). ¹³C NMR (75 MHz, DMSO): $\delta = 23.86$ (2×isoCH₃), 27.53 (CH_{iso}), 118.66 (C₁₁, C₁₅), 122.33 (C₆), (C₄) (C₁₃): 124.27, 125.96; 126.45 (C₅), 129.53 (C₁₂, C₁₄), 136.23 (C₃); (Ar-N), (Ar-N_{isoProp}): 140.11, 140.73; 153.86 (C=O).

1-(2-tert-Butylphenyl)-3-phenylurea 7h

By general procedure A, phenyl isocyanate (4.35 ml, 40 mmol, 1 equiv.) and 2-tertbutyl aniline **6h** (6.24 ml, 40 mmol, 1 equiv.) gave the product **7h** in 87% yield (9.329 g, 34.8 mmol) as a white powder; m.p. 208 °C; R_f (1:3 EtOAc:Petrol) 0.33; v_{max} (Nujol)/cm⁻¹ 1637 (C=O); $\delta_{\rm H}$ (300 MHz; DMSO) 1.40 (s, 9H, C(CH₃)), 3.40 (s, 3H, NCH₃), 6.96 (t, ³J=7.3Hz, 1H, Ar-H), 7.14-7.33 (m, 5H, Ar-H), 7.40 (d, ${}^{3}J$ =7.6Hz, 1H, Ar-*H*), 7.47 (d, ${}^{3}J$ =7.6Hz, 2H, Ar-*H*), 7.55 (s, 1H, N*H*), 9.04 (s, 1H, N*H*); $\delta_{\rm C}$ (75MHz; DSMO) 31.2 (C(*C*H₃)₃), 35.3 (*C*(CH₃)₃), 118. 6, 122.2, 126.2, 126.8, 126.9, 129.5, 130.9 (Ar*C*-H), 136.7, 141.0, 145.0, 154.2 (*C*=O); m/z (C.I.) 269 (100%, M + H⁺); HRMS found: M⁺, 269.1648. C₁₇H₂₀N₂O requires 269.1643.

1-(2-tert-Butylphenyl)-3-o-tolylurea 7j

General Procedure A was employed using *t*-butylphenyl isocyanate (0.30 ml, 1.7 mmol, 1 equiv) and *o*-toluidine (0.18 ml, 1.7mmol, 1 equiv) in 20 ml DCM to afford the desired product in 54% Yield (0.257g, 0.91 mmol) as a white powder; m.p. 206 °C; R_f (1:3 EtOAc:Petrol) 0.19; v_{max} (CHCl₃)/cm⁻¹ 1682 (C=O); δ_H (300 MHz; CDCl₃) 1.40 (s, 9H, C(CH₃)₃), 2.16 (s, 3H, CH₃), 6.22 (bs, 1H, NH), 6.31 (bs, 1H, NH), 7.14 (td, *J*= 7.3, 1.3 Hz, 1H, Ar-*H*), 7.20-7.36 (m, 5H, Ar-*H*), 7.50 (dd, *J*= 7.5, 2.0 Hz, 1H, Ar-*H*), 7.55 (dd, *J*= 7.5, 1.8 Hz, 1H, Ar-*H*), 7.73 (d, *J*= 8 Hz, 1H, Ar-*H*); δ_C (75MHz; DMSO) 18.8 (ArC-CH₃), 31.3 (C(CH₃)₃), 35.3 (C(CH₃)₃), 122.2, 123.3, 126.4, 126.8, 126.8, 126.9, 128.3, 130.9, 131.5, 136.8, 138.6, 145.7, 154.7 (*C*=O); m/z (C.I.) 283 (100%, M + H⁺); HRMS found: M⁺ 283.1804. C₁₈H₂₂N₂O requires 283.1805.

1-(2-tert-Butylphenyl)-3-(2,6-dimethylphenylurea) 7k

General procedure A was employed using 2,3 dimethylphenyl isocyanate (2.78 ml, 20 mmol, 1 equiv) and 2-tert-butyl aniline (3.19 ml, 20 mmol, 1 equiv) To afford the product in 55% yield (3.26 g, 11.0 mmol) as a white powder; m.p. 260°C; R_f (1:3 EtOAc:Petrol) 0.33; v_{max} (Nujol)/cm⁻¹ 1630 (C=O); δ_{H} (300 MHz; DMSO) 1.41 (s, 9H, C(CH₃)), 2.25 (s, 6H, ArC-CH₃), 3.37 (s, 3H, NCH₃), 7.08-7.12 (m, 3H, Ar-*H*), 7.13 (d, *J*=7.6 Hz, 1H, Ar-*H*), 7.20 (td, *J*=7.6, 1.6 Hz, 1H, Ar-*H*), 7.28-7.34 (m, 1H, Ar-*H*) 7.36 (d, *J*=6.8 Hz, 1H, Ar-*H*), 7.60 (bs, 1H, NH), 8.05 (s, 1H, NH); δ_{C} (75MHz; DSMO) 19.1 (ArC-CH₃), 31.2 (C(CH₃)₃), 35.3 (C(CH₃)₃), 118.6, 122.2, 126.2, 126.8,

126.9, 129.5, 130.9 (Ar*C*-H), 136.7, 141.0, 145.0, 154.2 (*C*=O); m/z (C.I.) 297 (100%, $M + H^+$); HRMS found: M^+ 297.1957. $C_{19}H_{25}N_2O$ requires 297.1961.

1-(2-tert-Butylphenyl)-1,3-dimethyl-3-phenylurea 9

General Procedure B was employed using 1-(2-*tert*-butylphenyl)-3-phenylurea (3g, 11.2 mmol), NaH (1.12g, 28.0 mmol, 2.5 equiv.) and MeI (2.09 ml, 4.77g, 33.6 mmol, 3 equiv.) To give the desired product as colourless cubic crystals in 70% yield (2.33g, 7.86 mmol), m.p. 52-53°C; R_f (8:1, Petrol:EtOAc) 0.11; v_{max} (CHCl₃)/cm⁻¹ 1638 (C=O); $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.42 (s, 9H, tBu), 3.12 (s, 6H, NMe), 6.50 (bs, 1H), 6.80 (bd, J= 3H), 7.00-7.22 (m, 4H) 7.39 (d, *J*=8.13Hz, 1H); $\delta_{\rm C}$ (CDCl₃) 32.1 (C(*C*H₃)₃, 36.1 *C*(CH₃)₃, 41.3 (NCH₃), 41.6 (NCH₃), 125.9, 126.5, 126.7, 126.8, 128.8, 129.4, 131.8, 146.6, 146.9, 161.874 (*C*=O); m/z ; HRMS found: M⁺ 297.1962, C₁₉H₂₅N₂O requires 297.1961. (Found C, 77.1; H, 8.4; N, 9.5. C₁₉H₂₄N₂O requires C, 77.0; H, 8.2; N, 9.5%).

1-Benzyl-1-(2-fluorophenyl)-3-phenylurea **11a**. —A mixture of the urea **7a** (266 mg, 1.16 mmol) and sodium hydroxide (55.6 mg, 1.39 mmol, 1.2 eq) was dissolved in THF (5 ml, dry) and was stirring for 0.5 h before addition of benzyl bromide (198 mg, 0.14 ml, 1.16 mmol, 1.0 eq). After stirring for 42 h, first Et₂O (5 ml) and then distilled H₂O (1 ml) was added. The aqueous phase was washed with Et₂O (3 × 10 ml) and the combined organic phases were dried over Na₂SO₄. Evaporation and drying under high vacuum gave 320 mg (crude yield) of a highly viscous oil. The crude product was purified by column chromatography using a mixture of petrol:ethyl acetate (10:1). The desired product was obtained as a white solid (209 mg, mol, 56.3 %, R_f (4:1 petrol (40/60) – EtOAc) = 0.30). ¹H NMR (300 MHz, CDCl₃): δ = 4.97 (s, 2 H, Ph-CH_AH, Ph-CHH_B), 6.19 (s, 1 H, N-H), 7.06 (m_c, 1 H, Ar-H), 7.16 (m_c, 2 H, Ar-H), 7.32 (m_c, 11 H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ = 52.65 (Ph-CH₂), 117.77 (d, J=19.8), 117.77 (C₃), 120.04 (C₁₁, C₁₅), 123.58 (C₆), 125.56 (d, J=4.0 Hz), 125.57 (C₅), 127.73 (C₁₃), 128.66 (C₁₈, C₂₂), 128.93 (C₁₉, C₂₁), 129.12 (C₁₂, C₁₄), 130.57 (d,

6

J=7.8 Hz), 130.58 (C₄), 131.50 (C₂₀); (C₁₇), (Ar-N_F), (C=O), (N-Ar), (C-F): 137.87, 138.80, 154.47, 157.26, 160.61. m/z (CI) 321 (100%, M+H⁺), 202 (40%, (C₆H₅F)NH₂⁺(C₇H₇)), 91 (57%, C₇H₇⁺); m/z (EI) 201 (10%, (C₆H₅F)NH₂⁺(C₇H₇)), 91 (100%, C₇H₇⁺). (Found: MH⁺, 321.1395.C₂₀H₁₈O₁ N₂F₁ requires *MH*, 321.1398). IR (film): $\nu/$ cm⁻¹ = 3300 (m) (N-H), 3058 (w) (Ar-H), 1659 (s) (C=O), 1597 (m), 1531 (s), 1500 (s), 1455 (w), 1442 (s).

1-Benzyl-1-(2-chlorophenyl)-3-phenylurea **11b**. —A mixture of the urea **7b** (250 mg, 1.01 mmol) and sodium hydroxide (48.7 mg, 1.22 mmol, 1.2 eq) was dissolved in THF (7 ml, dry) and was stirring for 0.5 h before addition of benzyl bromide (174 mg, 0.12 ml, 1.01 mmol, 1.0 eq). After stirring for 21 h, first Et₂O (5 ml) and then distilled H₂O (1 ml) was added. The aqueous phase was washed with Et₂O (3×10 ml) and the combined organic phases were dried over Na₂SO₄. After evaporation of Et₂O and drying under high vacuum the crude product was purified by column chromatography using a mixture of Petrolether : Ethylacetate (10:1). The desired product was obtained as white crystals (143 mg, 0.43 mmol, 42 %, R_f (4:1 petrol (40/60) – EtOAc) = 0.38). ¹H NMR (300 MHz, CDCl₃): $\delta = 4.34$ (s, 1 H, PhCH_AH), 5.56 (s, 1 H, PhCH_H_B), 6.03 (s, 1 H, N-H), 7.07 (dd, ³J=7.7 Hz, ⁴J=0.9 Hz, 2 H, H₁₈, H₂₂), 7.25 – 7.45 (m, 12 H, Ar-H), 7.61 (m_c, 1 H, H₆).

¹³C NMR (75 MHz, CDCl₃): $\delta = 52.18$ (CH₂-Ph), 120.34 (C₁₁, C₁₅), 123.71 (C₆), 127.80 (C₁₃), 128.56 (C₄) , 128.68 (C₁₈, C₂₂), 129.12 (C₁₉, C₂₁), 129.31 (C₁₂, C₁₄), 130.37 (C₂₀), 131.57 (C₅), 132.14 (C₃), 134.47 (Ar-Cl), 137.83 (N-Ar), 138.03 (C-CH₂), 138.78 (N-ArCl), 154.48 (C=O). *m/z* (CI) 337 (100%, M+H⁺), 247 (25%, M+H⁺-benzyl), 182 (21%, (C₆H₅)CH₂-NH⁺-(C₆H₄)), 91 (18%,C₇H₇⁺); *m/z* (EI) 336 (9%, M⁺), 301 (19%, M⁺-Cl), 91 (100%, C₇H₇⁺). (Found: MH⁺, 337.1103.C₂₀H₁₈O₁N₂Cl₁ requires *MH*, 337.1102). IR (film): v/ cm⁻¹ = (N-H): 3425 (w), 3335 (w); (Ar-H): 3062 (w), 3031 (w); (Alkyl C-H): 2925 (w), 2854 (w); (C=O) 1679 (s); 1523 , 1441, 1313 (m), 1240 (m), 752 (m), 731 (m), 699 (m).

1-Benzyl-1-(2-bromophenyl)-3-phenylurea **11c**. —A mixture of the urea **7c** (350 mg, 1.21 mmol) and sodium hydroxide (57.9 mg, 1.45 mmol, 1.2 eq) was dissolved in THF (7 ml, dry) and was stirring for 0.5 h before addition of benzyl bromide (207 mg, 0.14 ml, 1.21 mmol, 1.0 eq). After stirring for 15 h, first Et_2O (5 ml) and then distilled

Clayden et al.

 H_2O (1 ml) was added. The aqueous phase was washed with Et₂O (3 × 10 ml) and the combined organic phases were dried over Na₂SO₄. After evaporation of Et₂O and drying under high vacuum the crude product was purified by column chromatography using a mixture of Petrolether : Ethylacetate (10:1). The desired product was obtained as white crystals (179 mg, 0.47 mmol, 39 %, R_f (4:1 petrol (40/60) – EtOAc) = 0.30). ¹H NMR (300 MHz, CDCl₃): $\delta = 4.26$ (d, 15.0 Hz, 1 H, Ph-CH_AH), 5.60 (d, 15.0 Hz, 1 H, Ph-CHH_B), 5.95 (s, 1 H, NH), 7.0 – 7.1 (m, 3H, Ar-H), 7.2 – 7.4 (m, 10 H, Ar-H), 7.78-7.81 (m, 1 H, H₆). ¹³C NMR (75 MHz, CDCl₃): $\delta = 52.13$ (Ph-CH₂), 120.24 (C₁₁, C₁₅), 123.61 (C-Br), 128.67 (C₁₈, C₂₂), 129.09 (C₁₉, C₂₁), 129.19 (C₂₀), 129.42 (C₁₂, C₁₄); (C₁₃), (C₆), (C₄), (C₅), (C₃): 127.78, 129.49, 130.55, 132.35, 134.79; (C₁₇), (N-Ar), (N-ArBr): 137.86, 138.84, 139.53; 154.21 (C=O). *m*/*z* (CI) 383 (63%, ⁸¹Br, $M+H^+$), 381 (54%, ⁷⁹Br, $M+H^+$), 301 (45%, M^+-Br), 91 (100%, $C_7H_7^+$); m/z (EI) 301 $(17\%, M^+-Br), 91 (100\%, C_7H_7^+)$. (Found: MH⁺, 381.0597.C₂₀H₁₈O₁ N₂Br₁ requires *MH*, 381.0597). IR (film): $v/cm^{-1} = (N-H)$: 3424 (w), 3332 (w); (Ar-H): 3061 (w), 3029 (w); (C-H Alkyl): 2959 (w), 2928 (w); 1678 (s) (C=O), 1595 (m), 1523 (s), 1499 (m), 1473 (m), 1441 (s).

1-Benzyl-1-(2-iodophenyl)-3-phenylurea **11d**. —A mixture of the urea **7d** (300 mg, 0.89 mmol) and sodium hydroxide (43.4 mg, 1.07 mmol, 1.2 eq) was dissolved in THF (7 ml, dry) and was stirring for 0.5 h before addition of benzyl bromide (152 mg, 0.11 ml, 0.89 mmol, 1.0 eq). After stirring for 18 h, first Et₂O (5 ml) and then distilled H₂O (1 ml) was added. The aqueous phase was washed with Et₂O (3 × 10 ml) and the combined organic phases were dried over Na₂SO₄. Evaporation and drying under high vacuum gave a highly viscous yellowish oil. The crude product was purified by column chromatography using a mixture of Toluene : Ethylacetate (20:1). The desired product was obtained as a white solid (158 mg, 0.37 mmol, 41.5 %, R_f (10:1 petrol (40/60) – EtOAc) = 0.66). ¹H NMR (300 MHz, CDCl₃): δ = 4.18 (d, ²J=14.7 Hz, 1 H, PhCH_AH), 5.63 (d, ²J=14.7 Hz, 1 H, PhCHH_B), 5.90 (s, 1 H, N-H), 6.96 (dd, ³J=7.8 Hz, ⁴J=1.7 Hz, 1 H, H₆), 7.15 (m_c, 2 H, Ar-H, 7.25 (m_c, 9 H, Ar-H), 8.05 (dd, ³J=7.9 Hz, ⁴J=1.5 Hz, 1 H, H₃). ¹³C NMR (75 MHz, CDCl₃): δ = 52.25 (Ph-CH₂), 101.46 (I-Ar); (C₆), (C₁₃), (C₄), (C₂₀), (C₅): 123.61, 127.8, 130.10, 130.65, 131.79; 120.30 (C₁₁, C₁₅); (C₁₈, C₂₂), (C₁₉, C₂₁), (C₁₂, C₁₄): 128.69, 129.09, 129.58; (C₁₇), (N-

Ar), (C₃), (N-ArI): 137.88, 138.89, 141.15, 142.83; 153.95 (C=O). *m*/*z* (CI) 429 (10%, M+H⁺), 303 (100%, M+H⁺-I).

m/*z* (EI) 91 (100%, $C_7H_7^+$). (Found: MH⁺, 429.0456. $C_{20}H_{18}O_1 N_2I_1$ requires *MH*, 429.0458). IR (film): v/ cm⁻¹ = (N-H): 3422 (m), 3321 (m); (Ar-H): 3059 (m), 3029 (m); 2927 (w) (C-H Alkyl), 1676 (C=O), 1595 (s), 1523 (s), 1494 (s), 1441 (s).

1-Benzyl-1-(2-methylphenyl)-3-phenylurea **11e**.³ —A mixture of the urea **7e** (500 mg, 2.21 mmol) and sodium hydroxide (106 mg, 2.65 mmol, 1.2 eq) was dissolved in THF (8 ml, dry) and was stirring for 0.5 h before addition of benzyl bromide (378 mg, 0.26 ml, 2.21 mmol, 1.0 eq). After stirring for 60 h, first Et_2O (5 ml) and then distilled H_2O (1 ml) was added. The aqueous phase was washed with Et_2O (3 × 10 ml) and the combined organic phases were dried over Na₂SO₄. Evaporation and drying under high vacuum gave 698 mg (crude yield) of a highly viscous oil. The crude product was purified by column chromatography using a mixture of Petrolether: Ethylacetate (10:1). The desired product was obtained as a white solid (307 mg, mol, 44.0 %, Rf (4:1 petrol (40/60) - EtOAc) = 0.37). ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3)$: $\delta = 2.18$ (s, 3 H, Ar-CH₃), 4.53 (d, ²J=14.5 Hz, 1H, Ph-CH₄H), 5.27 (d, ²J=14.3 Hz, 1H, Ph-CHH_B), 6.07 (s, 1 H, N-H), 7.03 (d, ³J=7.4 Hz, 1 H, H₃), 7.3 (m_c, 13 H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): $\delta = 17.76$ (Ar-CH₃), 52.58 (Ph-CH₂), 119.75 (C₁₁, C₁₅); (C₆), (C₄), $(C_{13}), (C_5), (C_{20}), (C_3): 123.27, 127.72, 127.97, 129.19, 130.13, 132.23; (C_{18}, C_{22}), (C_{13}), (C_{$ (C₁₉, C₂₁), (C₁₂, C₁₄): 128.63, 129.10, 129.49, (C-Me), (N-ArMe), (N-Ar), (C-CH₂): 137.66, 138.22, 139.15, 139.39; 154.60 (C=O). *m/z* (CI) 317 (100%, M+H⁺), 91 $(18\%, (C_7H_7^+)); m/z$ (EI) 316 (5%, M⁺), 91 (100%, (C_7H_7^+)). (Found: MH⁺, $317.1651.C_{21}H_{21}O_1 N_2$ requires *MH*, 317.1648). IR (film): v/cm⁻¹ = (N-H): 3419 (m), 3328 (m); (Ar-H): 3061 (m), 3029 (m); (Alkyl-H): 2924 (m); (C=O) 1677 (s); 1594 (s), 1522 (s), 1441 (s), 1357 (s), 1311 (s), 1243 (s), 1212 (s), 753 (s), 728 (s), 700 (s).

1-Benzyl-1-(2-ethylphenyl)-3-phenylurea **11f**. —A mixture of the urea **7f** (500 mg, 2.08 mmol) and sodium hydroxide (100 mg, 2.50 mmol, 1.2 eq) was dissolved in THF (8 ml, dry) and was stirring for 0.5 h before addition of Benzyl bromide (356 mg, 0.25 ml, 2.08 mmol, 1.0 eq). After stirring for 7 h, first Et₂O (5 ml) and then distilled H₂O (1 ml) was added. The aqueous phase was washed with Et₂O (3×10 ml) and the combined organic phases were dried over Na₂SO₄. Evaporation and drying under high

vacuum gave 0.64 g (crude yield) of a highly viscous oil. The crude product was purified by column chromatography using a mixture of Petrolether: Ethylacetate (10:1). The desired product was obtained as a white solid (224 mg, 0.68 mmol, 32.6 %, R_f (4:1 petrol (40/60) – EtOAc) = 0.27). ¹H NMR (300 MHz, CDCl₃): δ = 1.15 (t, ³J=7.6 Hz, 3 H, CH_{3El}), 2.56 (m_c, 2 H, CH_{2El}), 4.44 (d, ²J= 14.4 Hz, Ph-CH_AH), 5.33 (d, ²J= 14.4 Hz, Ph-CHH_B), 6.04 (s, 1 H, N-H), 7.01 (m_c, 2 H, H₄?, H₁₃?), 7.26 (m_c, 10 H, Ar-H), 7.35 (m_c, 2 H, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ = 14.64 (CH_{3El}), 23.56 (CH_{2El}), 53.00 (Ph-CH₂), 119.70 (C₁₁, C₁₅); (C₄), (C₆), (C₁₃), (C₅), (C₂₀), (C₃): 123.24, 127.69, 127.73, 129.42, 130.22, 130.34; (C₁₈, C₂₂), (C₁₉, C₂₁), (C₁₂, C₁₄): 128.62, 129.09, 129.49; (C₂), (N-ArEt), (N-Ar), (C₁₇): 138.21, 138.71, 139.06, 143.32; 154.83 (C=O). *m/z* (CI) 331 (100%, M+H⁺), 241 (23%, M+H⁺– (C₇H₇⁺)+H⁺), 91 (60%, (C₇H₇⁺)); *m/z* (EI) 91 (100%, (C₇H₇⁺)). (Found: MH⁺, 331.1807.C₂₂H₂₃O₁ N₂ requires *MH*, 331.1805). IR (film): v/ cm⁻¹ = 3419 (w) (N-H); (Ar-H): 3061 (w), 3030 (w); (Alkyl C-H); 2970 (w), 2932 (w), 2875 (w); 1677 (s) (C=O), 1594 (m), 1521 (s), 1501 (m), 1440(s).

1-Benzyl-1-(2-isopropylphenyl)-3-phenylurea 11g. —A mixture of the urea 7g (500 mg, 1.97 mmol) and sodium hydroxide (94.5 mg, 2.36 mmol, 1.2 eq) was dissolved in THF (8 ml, dry) and was stirring for 0.5 h before addition of Benzyl bromide (404 mg, 0.28 ml, 1.16 mmol, 1.0 eq). After stirring for 18.5 h, first Et₂O (5 ml) and then distilled H₂O (1 ml) was added. The aqueous phase was washed with Et₂O (3×10 ml) and the combined organic phases were dried over Na₂SO₄. Evaporation and drying under high vacuum gave 669 mg (crude yield) of a highly viscous oil. The crude product was purified by column chromatography using a mixture of Petrolether: Diethylether (10:1). The desired product was obtained as a white solid (407 mg, 1.18 mmol, 60.0 %, R_f (4:1 petrol (40/60) – Et₂O) = 0.30) . ¹H NMR (300 MHz, CDCl₃): $\delta = 1.02$ (d, ³J= 6.9 Hz, CH_{3isoA}) 1.20 (d, ³J= Hz, CH_{3isoB}), 3.13 (sept, ³J=6.8 Hz, 1 H, CH_{iso}), 4.54 (d, ²J=14.3 Hz, Ph-CH_AH), 5.28 (d, ²J=14.3 Hz, Ph-CHH_B), 6.04 (s, 1 H, N-H), 7.02 (m_c, 2 H, H₄, H₁₃), 7.27 (m_c, 10 H, Ar-H), 7.43 (m_c, 2 H, Ar-H). ¹³C NMR $(75 \text{ MHz}, \text{CDCl}_3)$: $\delta = 24.04 (\text{CH}_{3\text{isoA}}), 24.51 (\text{CH}_{3\text{isoB}}), 53.41 (\text{Ph-CH}_2), 119.62 (\text{C}_{11}), 119.62 (\text{C}_{12}), 119.62 (\text{C}_{11}), 119.62 (\text{C}_{12}), 1$ C₁₅); (C₆), (C₄), (C₁₃), (C₅), (C₃), (C₂₀): 123.24, 127.60, 127.74, 128.15, 129.72, 130.06; (C₁₈, C₂₂), (C₁₉, C₂₁), (C₁₂, C₁₄): 128.66, 129.12, 129.58; (C-N_{isoProp}), (C-N), $(C_2), (C_{17}): 137.71, 138.18, 139.04, 148.33; 155.01 (C=O). m/z (CI) 345 (100\%),$

M+H⁺), 91 (8%, (C₇H₇⁺)). m/z (EI) 91 (100%, (C₇H₇⁺)). (Found: MH⁺, 345.1967.C₂₃H₂₅O₁ N₂ requires *MH*, 345.1961). IR (film): $\nu/$ cm⁻¹ = 3420 (w) (N-H), (Ar-H): 3061 (w), 3029 (w); (C-H Alkyl): 2963 (w), 2926 (w), 2867 (w); 1677 (s) (C=O); 1594 (m), 1522 (s), 1500 (m), 1488 (m), 1440 (s).

1-(2-tert-Butylphenyl)-1-methyl-3-phenylurea 11h

By General Procedure B was followed, 1-(2-*tert*-butylphenyl)-3-phenylurea **7h** (2.0 g, 7.4 mmol), NaH (0.36 g, 8.9 mmol, 1.2 equiv.) and MeI (0.7 ml, 1.59 g, 11.2 mmol, 1.5 equiv.) gave a crude product which was purified by flash chromatography to give the urea **11h** as a white solid in 86% yield (1.80 g, 6.4 mmol); m.p. 84-85 °C; R_f (8:1, Petrol:EtOAc) 0.21; ν_{max} (CHCl₃)/cm⁻¹ 1631 (C=O); δ_{H} (300 MHz; CDCl₃) 1.48 (s, 9H, C(CH₃)), 3.30 (s, 3H, NCH₃), 5.98 (bs, 1H, NH), 6.98-7.04 (m, 1H, Ar-H), 7.20-7.30 (m, 5H, Ar-H), 7.37 (td, *J*=7.3, 1.7 Hz, 1H, Ar-H), 7.43 (td, *J*=7.3, 1.7 Hz, 1H, Ar-H) 7.39 (dd, *J*=7.9, 1.7 Hz, 1H, Ar-H); δ_{C} (75MHz; CDCl₃) 31.9 (C(CH₃)₃), 36.2 (*C*(CH₃)₃), 39.1 (NCH₃), 119.5, 123.2, 128.7, 129.0, 129.4, 129.7, 131.1, 141.0, 148.8, 155.8 (*C*=O); m/z (C.I.) 283 (100%, M + H⁺); HRMS found: M⁺ 283.1803. C₁₈H₂₃N₂O requires 283.1805.

1-Benzyl-1-(2-tert-butylphenyl)-3-phenylurea **11i**. —A mixture of the urea **7h** (500 mg, 1.87 mmol) and sodium hydroxide (89.5 mg, 2.24 mmol, 1.2 eq) was dissolved in THF (8 ml, dry) and the solution was stirring for 0.5 h before addition of benzyl bromide (319 mg, 0.22 ml, 1.87 mmol, 1.0 eq). After stirring for 18 h, first Et₂O (5 ml) and then distilled H₂O (1 ml) was added. The aqueous phase was washed with Et₂O (5 × 10 ml) and the combined organic phases were dried over Na₂SO₄. Evaporation and drying under high vacuum gave 584 mg (crude yield) of a highly viscous oil and a waxy solid. The crude product was purified by column chromatography using a mixture of Petrolether: Ethylacetate (10:1). The desired product was obtained as a white solid (388 mg, mol, 58.0 %, R_f (4:1 petrol (40/60) – EtOAc) = 0.45). ¹H NMR (300 MHz, CDCl₃): $\delta = 1.51$ (s, 9 H, 3×CH₃), 3.89 (d,

²J=14.4 Hz, 1 H, Ph-CH_AH), (d, ²J= 14.4 Hz, 1 H, Ph-CHH_B), 6.01 (s, 1 H, N-H), 6.65 (dd, ³J= 7.9 Hz, ⁴J=1.5 Hz, 1 H, H₃), 7.04 (m_c, 1 H), 7.13 (dt, ³J=7.5 Hz, ⁴J=1.6 Hz, 1 H, H₄ or H₅ or H₁₃ or H₂₀), 7.34 (m_c, 9 H, Ar-H), 7.68 (dd, ³J=8.2 Hz, ⁴J=1.5 Hz, 1 H, H₆?). ¹³C NMR (75 MHz, CDCl₃): δ = 32.36 (3 × CH₃), 36.59 (C_{tert}), 54.32 (Ph-CH₂), 119.70 (C₁₁, C₁₅); (C₆), (C₄), (C₁₃), (C₃), (C₅), (C₂₀): 123.26, 127.60, 127.78, 129.54, 130.58, 133.00; (C₁₈, C₂₂), (C₁₉, C₂₁), (C₁₂, C₁₄): 128.63, 129.10, 130.02; (N-Ar^tBu), (C₂), (N-Ar), (C₁₇): 138.16, 138.34, 138.98, 148.65; 155.16 (C=O). *m/z* (CI) 360 (100%, M+H⁺), 301 (57%, (M-^tBu)⁺); *m/z* (EI) 301 (21%, (M-^tBu)⁺), 182 (47%, (C₇H₇)-NH⁺-(C₆H₅)), 91 (100%, (C₇H₇)⁺). (Found: MH⁺, 359.2118.C₂₄H₂₇O₁ N₂ requires *MH*, 359.2118). IR (film): v/ cm⁻¹ = 3421 (w) (N-H), (Ar-H): 3061 (w), 3030 (w); 2962 (w) (C-H Alkyl), 1678 (C=O), (C=C): 1594 (m), 1521 (s), 1500 (m), 1486 (m), 1440 (s).

1-(2-tert-Butylphenyl)-1-methyl-3-o-tolylurea 11j

General procedure B was followed, employing 1-(2-*tert*-butylphenyl)-3-*o*-tolylurea (0.200 g, 0.75 mmol), NaH (0.036 g, 0.89 mmol) and MeI (0.07 ml, 0.159 g, 1.12 mmol) in 20 ml of anhydrous THF to give a colourless oil purified by column chromatography to afford the above product in 65% yield (0.138 g, 0.49 mmol) as a white solid; m.p 121°C; R_f (1:3 EtOAc:Petrol) 0.32; v_{max} (CHCl₃)/cm⁻¹ 1684 (C=O) ; $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.48 (s, 9H, C(CH₃)₃), 1.80 (s, 3H, CH₃), 3.32 (s, 3H, NCH₃), 5.90 (bs, 1H, NH), 6.96 (td, J= 7.5, 1.2 Hz, 1H, Ar-H), 7.07 (d, J= 7.0 Hz, 1H, Ar-H), 7.20 (d, J= 7.0 Hz, 1H, Ar-H), 7.27 (dd, J= 7.0, 2.0 Hz, 1H, Ar-H), 7.42 (tdd, J= 7.5, 7.3, 2.0 Hz, 2H, Ar-H), 7.65 (dd, J= 7.6, 2.0 Hz, 1H, Ar-H), 8.03 (d, J= 8.0 Hz, 1H, Ar-H); $\delta_{\rm C}$ (75MHz, CDCl₃) 17.3 (CH₃), 32.0 (C(CH₃)₃, 36.2 *C*(CH₃)₃, 39.0 (NCH₃), 120.4, 123.3, 126.6, 127.2, 128.6, 129.4, 129.7, 130.3, 131.0, 137.8, 141.0, 148.9 (C=O); m/z (C.I.) 397 (100%, M⁺); HRMS found: M⁺ 297.1962. C₁₉H₂₅N₂O requires 297.1961. Found: C, 76.8; H, 8.3; N 9.4%. C₁₉H₂₅N₂O requires C, 77.0; H, 8.2; N, 9.5%.

3-(2-tert-Butylphenyl)-1-methyl-1-phenylurea 12h

By general procedure A, *t*-butylphenyl isocyanate **14** (1.73 ml, 10 mmol, 1 equiv.) and *N*-methylaniline (1.08 ml, 10 mmol, 1 equiv.) in 50ml of DCM gave an oil which was purified by column chromatography to give the urea **12h** in 83% yield (2.34 g, 8.3 mmol); m.p. 78° C; R_f (1:4, EtOAc:petrol) 0.34 ; v_{max} (CHCl₃)/cm⁻¹ 1631 (C=O) ; $\delta_{\rm H}$ (500 MHz; CDCl₃) 1.20 (s, 9H, C(CH₃)), 3.40 (s, 3H, NCH₃), 6.26 (bs, 1H, NH), 7.04 (td, *J*=7.9, 1.4 Hz, 1H, Ar-*H*), 7.24 (td, *J*=7.0, 1.4 Hz, 1H, Ar-*H*), 7.28 (dd, *J*= 8.0, 1.4Hz, 1H, Ar-*H*), 7.39-7.44 (m, 3H, Ar-*H*), 7.52 (t, *J*=7.4 Hz, 2H, Ar-H), 7.84 (d, *J*=8.1 Hz, 1H, Ar-*H*); $\delta_{\rm C}$ (75MHz; CDCl₃) 30.5 (C(CH₃)₃), 34.3 (*C*(CH₃)₃), 37.7 (NCH₃), 124.5, 125.9, 126.5, 127.1, 128.7, 130.7, 130.8, (Ar*C*-H) 1371.1, 140.6, 143.1, 155.2 (*C*=O); m/z (C.I.) 283 (100%, M + H⁺); HRMS found: M⁺ 283.1802. C₁₈H₂₃N₂O requires 283.1805. Found: C, 76.4; H, 7.8; N 9.8%. C₁₉H₂₅N₂O requires C, 76.6; H, 7.9; N, 9.9%.

3-(2-tert-Butylphenyl)-1-methyl-1-o-tolylurea 12j

General procedure B was followed, employing 1-(2-*tert*-butylphenyl)-3-*o*-tolylurea (0.200 g, 0.75 mmol), NaH (0.036 g, 0.89 mmol) and MeI (0.07 ml, 0.159 g, 1.12 mmol) in 20 ml of anhydrous THF to give a colourless oil purified by column chromatography to afford the above minor product in 12% yield (0.026 g, 0.09 mmol) as a white solid; m.p 120°C; R_f (1:3 EtOAc:Petrol) 0.21; ν_{max} (CHCl₃)/cm⁻¹ 1684 (C=O) ; δ_{H} (300 MHz; CDCl₃) 1.09 (s, 9H, C(CH₃)₃), 2.40 (s, 3H, CH₃), 3.38 (s, 3H, NCH₃), 6.20 (bs, 1H, NH), 7.04 (td, J= 7.4, 1.5 Hz, 1H, Ar-H), 7.23 (dd, J= 7.7, 1.5

Hz, 1H, Ar-H), 7.28 (dd, J= 8.0, 1.5 Hz, 1H, Ar-H), 7.35-7.40 (m, 4H, Ar-H), 7.93 (dd, J= 8.0, 1.5 Hz, 1H, Ar-H); $\delta_{\rm C}$ (75MHz, CDCl₃) 17.7 (CH₃), 30.3 (C(*C*H₃)₃, 34.1 *C*(CH₃)₃, 36.2 (NCH₃), 124.1, 125.0, 126.4, 127.0, 128.3, 129.2, 129.5, 132.3, 137.2, 137.6, 140.0, 141.1, 155.0 (C=O); m/z (C.I.) 397 (100%, M⁺); HRMS found: M⁺ 297.1965. C₁₉H₂₅N₂O requires 297.1961.

3-(2-tert-Butylphenyl)-1-methyl-1-(2,6-dimethylphenylurea) 12k

General Procedure B was employed using 1-(2-*tert*-butylphenyl)-3-(2,6dimethylphenylurea) (0.600g, 2.02 mmol), NaH (60% in mineral oil, 0.096g, 2.4 mmol, 1.2 equiv.) and MeI (0.19 ml, 0.431 g, 3.04 mmol, 1.5 equiv.) The crude product was further purified by column chromatography to give the desired product as a white solid in 75% yield (0.440 g, 1.52 mmol), m.p. 71°C; R_f (4:1, Petrol:EtOAc) 0.26; v_{max} (CHCl₃)/cm⁻¹ 1661 (C=O) ; δ_{H} (300 MHz; CDCl₃) 1.08 (s, 9H, CCH₃), 2.38 (s, 6H, ArC-CH₃), 3.30 (s, 3H, NCH₃), 6.20 (bs, 1H, NH), 7.03 (td, *J*= 7.4, 1.5 Hz, 1H, Ar-*H*), 7.20-7.30 (m, 5H, Ar-*H*), 8.00 (dd, *J*= 8.1, 1.4 Hz, 1H, Ar-*H*); δ_{C} (75MHz; CDCl₃) 18.1 (ArC-CH₃), 30.3 (C(CH₃)₃), 34.1 (C(CH₃)₃), 34.5 (NCH₃), 123.9, 124.4, 127.1, 129.1, 129.7 (ArC-H), 137.4, 139.5, 139.7, 154.9 (C=O); m/z (C.I.) 311 (100%, M + H⁺) ; HRMS found: M⁺ 311.2115. C₂₀H₂₆N₂O requires 311.2118. 1-(2-tert-Butyl-methylphenyl)-1-methyl-3-phenylurea 16a

General procedure C was followed employing 1-(2-*tert*-butylphenyl)-1-methyl-3-phenylurea (0.230g, 0.82 mmol), sBuLi (2.6 ml, 2.85 mmol, 3.5 equiv.) and methyliodide (0.08ml, 1.22 mmol, 1.5 equiv.) To afford the product in 54% yield (0.131g, 0.44 mmol) as a white solid, m.p. 121 °C; R_f (1:4 EtOAc:Petrol) 0.29 ; v_{max} (CHCl₃)/cm⁻¹ 1682 (C=O); δ_H (300 MHz; CDCl₃) 1.46 (s, 9H, tBu), 2.30 (s, 3H, ArCCH₃), 3.25 (s, 3H, NMe), 6.04 (s, 1H, NH), 7.00-7.06 (m, 1H, Ar-H), 7.23-7.35 (m, 7H, Ar-H), 7.50 (d, *J*=7.8Hz, 1H); δ_C (CDCl₃) 18.4 (CH₃), 32.3 (C(CH₃)), 36.5 (C(CH₃), 37.5 (NCH₃), 119.7, 123.2, 127.7, 129.1, 129.2, 130.4, 139.0, 139.1, 149.1, 155.3 (*C*=O); m/z (C.I.) 297 (100%, M⁺); HRMS found: M⁺ 297.1966. C₁₉H₂₅N₂O requires 297.1961. Found: C, 77.0; H, 8.2; N 9.4%. C₁₉H₂₅N₂O requires C, 77.0; H, 8.2; N, 9.5%.

1-(2-tert-Butyl-6-bromophenyl)-1-methyl-3-phenylurea 16b

By General Procedure C, 1-(2-*tert*-butylphenyl)-1-methyl-3-phenylurea **11h** (0.100 g, 0.35 mmol), *sec*-BuLi (0.68 ml, 0.88 mmol) and dibromoethane (0.1ml) gave a crude product which was further purified by flash chromatography to yield the bromo compound **16b** as a white solid in 80% yield (0.101 g, 0.28 mmol), m.p. 86 °C; v_{max} (CHCl₃)/cm⁻¹ 1681 (C=O); δ_{H} (300 MHz; CDCl₃) 1.44 (s, 9H, C(CH₃)₃), 3.23 (s, 3H, NCH₃), 5.98 (bs, 1H, NH), 7.01-7.08 (tt, *J*=6.7, 2.0 Hz, 1H, Ar-*H*), 7.23-7.37 (m, 5H, Ar-*H*), 7.62 (dd, *J*=8.2, 1.5 Hz, 1H, Ar-*H*), 7.72 (dd, *J*=7.9, 1.5Hz, 1H, Ar-*H*); δ_{C}

(75MHz; CDCl₃) 32.1 (C(*C*H₃)₃), 37.1 (*C*(CH₃)₃), 37.8 (N*C*H₃), 119.5, 120.2, 123.5, 127.9, 129.1, 129.5, 130.4 (Ar*C*-H), 138.9, 139.0, 152.0, 155.0 (*C*=O); m/z (E.S.) 361 (100%, $M + H^+$); HRMS found: M^+ 361.0905. C₁₈H₂₂N₂OBr requires 361.0910.

1-(2-tert-Butyl-6-iodophenyl)-1-methyl-3-phenylurea 16c

By General Procedure C, 1-(2-*tert*-Butylphenyl)-1-methyl-3-phenylurea **11h** (0.100 g, 0.35 mmol), *sec*-BuLi (0.68 ml, 0.88 mmol) and iodine in THF (0.223 g, 0.88 mmol) gave a crude product which was purified by flash chromatography to yield the iodo-compound **16c** as a white solid in 93% yield (0.133 g, 0.29 mmol); m.p. 96 °C; v_{max} (CHCl₃)/cm⁻¹ 1677 (C=O); δ_{H} (300 MHz; CDCl₃) 1.40 (s, 9H, C(CH₃)₃), 3.15 (s, 3H, NCH₃), 5.76 (bs, 1H, NH), 6.93 (tt, *J*= 6.9, 1.7 Hz, 1H, Ar-*H*), 7.00 (t, *J*=7.9 Hz, 1H, Ar-*H*), 7.16-7.21 (m, 4H, Ar-*H*), 7.54 (d, *J*=8.2, 1.4 Hz 2H, Ar-*H*); δ_{C} (75MHz; CDCl₃) 32.2 (C(CH₃)₃), 37.2 (*C*(CH₃)₃), 38.0 (NCH₃), 104.8 (Ar*C*-I), 120.3, 123.6, 129.1, 130.3, 130.8, 139.9 (Ar*C*-H), 139.0, 141.8, 151.9, 154.7 (*C*=O); m/z (C.I.) 409 (100%, M + H⁺); HRMS found: M⁺ 409.0772. C₁₈H₂₂N₂OI requires 409.0771.

1-(2-tert-Butyl-6-(methylthio)phenyl)-1-methyl-3-phenylurea 16d

By General Procedure C, 1-(2-*tert*-butylphenyl)-1-methyl-3-phenylurea **11h** (0.100 g, 0.35 mmol), *sec*-BuLi (0.68 ml, 0.88 mmol) and dimethyldisulfide (0.1 ml) gave a

crude product which was purified by flash chromatography to yield the sulfide **16d** as a white solid in 95% yield (0.109g, 0.33 mmol), m.p. 122 °C; v_{max} (CHCl₃)/cm⁻¹ 1681 (C=O); $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.34 (s, 9H, C(CH₃)₃), 2.34 (s, 3H, SCH₃), 3.16 (s, 3H, NCH₃), 5.94 (bs, 1H, NH), 6.92 (tt, *J*= 7.3, 1.4 Hz, 1H, Ar-*H*), 7.05 (d, *J*=7.0, 2.2 Hz, 1H, Ar-*H*), 7.13-7.18 (m, 4H, Ar-*H*), 7.28-7.30 (m, 2H, Ar-*H*); $\delta_{\rm C}$ (75MHz; CDCl₃) 15.2 (SCH₃) 32.4 (C(CH₃)₃), 36.9 (*C*(CH₃)₃), 37.0 (NCH₃), 120.2, 123.3, 123.7, 125.9, 129.2, 129.7 (ArC-H), 137.3, 139.3, 142.5, 150.0 (*C*=O); m/z (C.I.) 329 (100%, M + H⁺); HRMS found: M⁺ 329.1680. C₁₉H₂₅N₂OS requires 329.1682. *1-(2-tert-Butyl-6-(trimethylsilyl)phenyl)-1-methyl-3-phenylurea* **16e**

By General Procedure C, 1-(2-*tert*-butylphenyl)-1-methyl-3-phenylurea **11h** (0.100 g, 0.35 mmol), *sec*-BuLi (0.68 ml, 0.88 mmol) and chlorotrimethylsilane (0.1 ml) gave a crude product which was purified by flash chromatography to yield the silane **16e** as a white solid in 81% yield (0.100 g, 0.28 mmol), 70-71 °C; v_{max} (CHCl₃)/cm⁻¹ 1682 (C=O); $\delta_{\rm H}$ (300 MHz; CDCl₃) 0.40 (s, 9H, Si(CH₃)), 1.45 (s, 9H, C(CH₃)₃), 3.29 (s, 3H, NCH₃), 6.01 (bs, 1H, NH), 7.00-7.08 (m, 1H, Ar-H), 7.25-7.30 (m, 4H, Ar-H), 7.43 (t, *J*=7.4 Hz, 1H, Ar-H), 7.62 (dd, *J*=7.3, 1.6 Hz, 1H, Ar-H), 7.75 (dd, *J*=8.0, 1.6 Hz, 1H, Ar-H); $\delta_{\rm C}$ (75MHz; CDCl₃) 1.0 (Si(CH₃)₃) 32.7 (C(CH₃)₃), 37.1 (C(CH₃)₃), 39.4 (NCH₃), 119.6, 123.1, 128.9, 129.1, 132.2, 135.7 (ArC-H), 138.9, 142.9, 143.7, 148.7, 155.1 (*C*=O); m/z (C.I.) 355 (100%, M + H⁺); HRMS found: M⁺ 355.2200.

1-(2-tert-Butyl-6-formylphenyl)-1-methyl-3-phenylurea 16f

By General Procedure C, 1-(2-*tert*-butylphenyl)-1-methyl-3-phenylurea **11h** (0.100 g, 0.35 mmol), *sec*-BuLi (0.68 ml, 0.88mmol) and DMF (0.1ml) gave a crude product which was purified by flash chromatography to yield the aldehyde **16f** as a white solid in 66% yield (0.071g, 0.23 mmol); m.p. 128 °C; v_{max} (CHCl₃)/cm⁻¹ 1685 (C=O); δ_{H} (300 MHz; CDCl₃) 1.52 (s, 9H, C(CH₃)₃), 3.37 (s, 3H, NCH₃), 5.88 (bs, 1H, NH), 7.03-7.10 (m, 1H, Ar-H), 7.23-7.26 (m, 4H, Ar-H), 7.61 (t, *J*= 7.6 Hz, 1H, Ar-H), 7.98 (dd, *J*=7.6, 1.8 Hz, 2H, Ar-H), 10.18 (s, 1H, CHO); δ_{C} (75MHz; CDCl₃) 32.2 (C(CH₃)₃), 36.9 (C(CH₃)₃), 40.4 (NCH₃), 120.2, 123.9, 129.1, 129.5, 130.0, 136.3 (ArC-H), 135.5, 135.3, 138.4, 150.1, 155.2 (NC=O), 190.2 (C=O); m/z (C.I.) 311 (100%, M + H⁺).

1-(2-tert-Butyl-6-(hydroxy(phenyl)methyl)phenyl)-1-methyl-3-phenylurea 16g

By General procedure C, 1-(2-*tert*-butylphenyl)-1-methyl-3-phenylurea **11h** (0.100 g, 0.35 mmol), *sec*-BuLi (1.3M solution in cyclohexane, 0.68 ml, 0.89 mmol, 2.5 equiv.) and benzaldehyde (0.09ml, 0.89 mmol, 2.5 equiv.) gave the alcohol **16g** in 83% yield (0.113g, 0.29 mmol) as a separable mixture of diastereoisomers.

Major diastereoisomer: m.p. 190-191 °C; R_f (1:4 EtOAc:Petrol) 0.21 ; ν_{max} (CHCl₃)/cm⁻¹ 3447 (OH), 1732.49 (C=O); δ_{H} (300 MHz; CDCl₃) 1.44 (s, 9H, C(CH₃)), 2.97(s, 3H, NCH₃), 3.54 (d, *J*=4.4Hz, 1H, OH), 5.88 (d, *J*=4.4Hz, 1H CHCOH), 6.46 (s, 1H, NH), 6.96 (t, *J*=7.3Hz, 1H, Ar-*H*), 7.14 (t, *J*=7.3Hz, 2H, Ar-*H*), 7.22 (d, *J*=7.4Hz, 1H, Ar-*H*), 7.30-7.40 (m, 8H, Ar-*H*) 7.60 (dd, *J*=7.6, 2.2Hz, 1H,

Ar-*H*); δ_{C} (75MHz; CDCl₃) 32.4 (C(*C*H₃)), 36.77 (*C*(CH₃), 39.2 (N*C*H) 39.3 (N*C*H₃), 70.8 (*C*HOH), 138.2, 139.0, 143.7, 144.1, 148.7, 155.8 (*C*=O); m/z (C.I.) 389 ; HRMS found: M⁺ 389.2227. C₂₅H₂₈N₂O₂ requires 389.2224.

Minor diastereoisomer: m.p. 191-192 °C; R_f (1:4 EtOAc:Petrol) 0.07; $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.45 (s, 9H, C(CH₃)₃), 2.21 (s, 1H, OH), 3.42 (s, 3H, NCH₃), 5.88 (bs, 1H, NH), 6.00 (s, 1H, CHOH), 6.94-6.99 (m, Ar-H), 7.12 (t, *J*=7.3Hz, 1H, Ar-H), 7.16 (d, *J*=7.3Hz, 2H, Ar-H), 7.22 (t, *J*=7.6Hz, 2H, Ar-H), 7.39 (d, *J*=7.2Hz, 2H, Ar-H), 7.47 (t, *J*=7.9Hz, 1H, Ar-H), 7.62 (dd, *J*=8.2, 1.5Hz, 1H, Ar-H), 7.66 (dd, *J*=7.7, 1.5 Hz, 1H, Ar-H); $\delta_{\rm C}$ (75MHz; CDCl₃) 32.6 (C(CH₃)), 37.1 (C(CH₃), 39.0 (NCH) 39.0 (NCH₃), 72.0 (CHOH), 137.4, 138.6, 143.2, 144.3, 149.2, 155.2 (*C*=O); m/z (C.I.) 389 (100%, M⁺); HRMS found: M⁺ 389.2226 requires C₂₅H₂₈N₂O₂ 389.2224.

1-Methyl-3-phenyl-1-p-tolylurea 17a

General procedure A was followed employing phenyl isocyanate (4.17 g, 35.0 mmol) and *p*-toluidine (4.20 g, 35.0 mmol) to obtain the product in 81 % yield (6.48 g, 27.0 mmol) as a pale yellow solid, m.p. 131 °C; R_f (1:3 EtOAc:Petroleum ether) 0.25; v_{max} (CHCl₃)/cm⁻¹ 1648.5 (C=O); δ_{H} (300 MHz; CDCl₃) 2.46 (s, 3H, CH₃), 3.38 (s, 3H, NCH₃), 6.32 (bs, 1H, NH), 7.03 (tt, *J*=7.1, 1.4 Hz, 2H, ArC-H), 7.24-7.36 (m, 8H, Ar-H); δ_{C} (CDCl₃) 21.6 (ArC-CH₃), 37.7 (N-CH₃), 119.6, 123.2, 127.7, 129.2, 131.4, 138.4, 139.4, 140.6, 155.2 (*C*=O); m/z (C.I.) 241 (100%, M + H⁺); HRMS found: M⁺ 241.1334. C₁₅H₁₇N₂O requires 241.1332.

1-Methyl-1-phenyl-3-p-tolylurea 17b

General procedure A was followed employing *p*-tolyl isocyanate (4.66 g, 35.0 mmol) and *N*-methylaniline (3.75 g, 35.0 mmol) to obtain the product in 77 % yield (6.48 g, 27.0 mmol) as a pale yellow solid, m.p. 109 °C; R_f (1:3 EtOAc:Petroleum ether) 0.21; v_{max} (CHCl₃)/cm⁻¹ 1653.8 (C=O); δ_{H} (300 MHz; CDCl₃) δ_{H} (300 MHz; CDCl₃) 2.31 (s, 3H, CH₃), 3.39 (s, 3H, NCH₃), 6.23 (bs, 1H, NH), 7.10 (d, *J*=8.5 Hz, 2H, ArC-*H*), 7.22 (d, *J*=8.5 Hz, 1H, Ar-*H*), 7.38-7.44 (m, 4H, Ar-*H*), 7.53 (t, *J*=7.6 Hz, 1H, Ar-*H*); δ_{C} (CDCl₃) 21.1 (ArC-CH₃), 37.7 (N-CH₃), 119.8, 127.9, 128.2, 129.7, 130.7, 132.8, 136.7, 143.4, 155.0 (*C*=O); m/z (C.I.) 241 (100%, M + H⁺) ; HRMS found: M⁺ 241.1335. C₁₅H₁₇N₂O requires 241.1332.

1-Methyl-1-(4-methyl-2-(trimethylsilyl)phenyl)-3-phenylurea 18a

General procedure C was followed employing urea (0.100g, 0.416mmol), sBuLi (0.95 ml, 1.1M solution in cyclohexane, 1.040 mmol), and chlorotrimethylsalene (0.13 ml, 1.04 mmol) to obtain the product in 54% yield (0.085g, 0.272 mmol) as a white solid, m.p. °C; R_f (1:3 EtOAc:Petroleum ether) 0.26; v_{max} (CHCl₃)/cm⁻¹ 3422 (NH), 1684 (C=O); δ_H (300 MHz; CDCl₃) 0.35 (s, 9H, SiCH₃), 2.43 (s, 3H, ArC-CH₃), 3.29 (s, 3H, NCH₃), 6.02 (bs, 1H, NH), 7.02 (tt, *J*=6.5, 1.8 Hz, 1H, ArC-H), 7.20 (d, *J*=7.9 Hz, 1H, Ar-H), 7.25-7.32 (m, 4H, Ar-H), 7.35 (dd, *J*=7.9, 2.2 Hz, 1H, Ar-H), 7.47 (dd, *J*=2.2 Hz, 1H, Ar-H); δ_C (CDCl₃) –0.04 (Si(CH₃)₃), 21.0 (ArC-CH₃), 38.3 (N-CH₃), 119.6, 128.5, 128.8, 129.5, 131.8, 132.6 (ArC-H), 136.4 (ArC-CH₃), 137.0 (ArC-Si), 140.7 (ArC-NH), 147.9 (ArC-NCH₃), 155.5 (C=O); m/z (C.I.) 313 (100%, M + H⁺); HRMS found: M⁺ 313.1732. C₁₈H₂₄N₂OSi requires 313.1731.

1-Methyl-1-(2-(trimethylsilyl)phenyl)-3-p-tolylurea 18b

General procedure C was followed employing urea (0.100g, 0.416mmol), sBuLi (0.95 ml, 1.1M solution in cyclohexane, 1.040 mmol), and chlorotrimethylsalene (0.13 ml, 1.04 mmol) to obtain the product in 46% yield (0.060g, 0.19 mmol) as a white solid, m.p. °C; R_f (1:3 EtOAc:Petroleum ether) 0.25; v_{max} (CHCl₃)/cm⁻¹ 3425 (NH), 1684 (C=O); δ_H (300 MHz; CDCl₃) 0.33 (s, 9H, SiCH₃), 2.29 (s, 3H, ArC-CH₃), 3.28 (s, 3H, NCH₃), 5.87 (bs, 1H, NH), 7.04 (d, *J*=8.6 Hz, 2H, Ar-*H*), 7.18 (d, *J*=8.6 Hz, 2H, Ar-*H*), 7.30 (dd, *J*=7.6, 1.4 Hz, 1H, Ar-*H*), 7.45 (td, *J*=7.4, 1.4 Hz, 1H, Ar-*H*), 7.55 (td, *J*=7.4, 1.8 Hz, 1H, Ar-*H*), 7.70 (dd, *J*=7.4, 1.8 Hz, 1H, Ar-*H*); δ_C (CDCl₃) –0.04 (Si(CH₃)₃), 21.0 (ArC-CH₃), 38.3 (N-CH₃), 119.6, 128.5, 128.8, 129.5, 131.8, 132.6 (ArC-*H*), 136.4 (ArC-CH₃), 137.0 (ArC-Si), 140.7 (ArC-NH), 147.9 (ArC-NCH₃), 155.5 (*C*=O); m/z (C.I.) 313 (100%, M + H⁺) ; HRMS found: M⁺ 313.1726. C₁₈H₂₄N₂OSi requires 313.1731.

3-(2-tert-Butylphenyl)-1-(2-(hydroxy(phenyl)methyl)phenyl)-1-methylurea 19

By general procedure C, 3-(2-tert-butylphenyl)-1-methyl-1-phenylurea **12h** (0.100 g, 0.35 mmol), sBuLi (1.3M solution in cyclohexane, 0.68 ml, 0.89 mmol, 2.5 equiv.) and benzaldehyde (0.09ml, 0.89 mmol, 2.5 equiv.) gave a compound tentatively identified as **20** in 14% yield (0.016g, 0.04 mmol) as a 1:2 mixture of conformers. R_f (1:3 EtOAc:Petrol) 0.09; Major conformer $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.11 (s, 9H, C(CH₃)₃), 1.24 (s, 1H, OH), 2.84 (s, 3H, NCH₃), 6.13 (s, 1H CHCOH), 6.36 (bs, 1H, NH), 7.06 (t, *J*=7.2 Hz, 1 H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, Ar-*H*), 7.24 (t, *J*=7.0 Hz, 1H, Ar-*H*), 7.30-7.38 (m, 5H, Ar-*H*), 7.45 (m, 2H, Ar-*H*), 7.75-7.78 (m, 1H, Ar-*H*), 7.86-7.91 (m, 1H, Ar-*H*); minor conformer 0.95 (s, 9H, C(CH₃)₃), 1.18 (s, 1H, OH), 3.33 (s, 3H, NCH₃), 6.08 (s, 1H CHCOH), 5.80 (bs, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H, NH), 6.97 (t, *J*=7.0Hz, 1H, Ar-*H*), 7.08-7.14 (m, 1H, Ar-*H*), 7.18 (t, *J*=7.4 Hz, 1H), 7.08-7.14 (m,

Ar-*H*), 7.24 (t, *J*=7.0 Hz, 1H, Ar-*H*), 7.30-7.38 (m, 5H, Ar-*H*), 7.45 (m, 2H, Ar-*H*), 7.56 (d, *J*=6.9 Hz, 1H, Ar-*H*), 7.86-7.91 (m, 1H, Ar-*H*); m/z (C.I.) 389 ; HRMS found: M⁺ 389.2222. C₂₅H₂₈N₂O₂ requires 389.2224.

3-(2-tert-Butyl-6-methylphenyl)-1-(2-ethyl-6-methylphenyl)-1-methylurea 20

General Procedure C was employed using 3-(2-*tert*-butylphenyl)-1-methyl-1-(2,6dimethylphenylurea) (0.100g, 0.344 mmol), sBuLi (0.66ml, 0.86mmol) and MeI (0.03 ml, 0.073 g, 0.86 mmol, 1.5 equiv.) To give a crude purified by column chromatography to afford the desired product as a white solid in 64% yield (0.071 g, 0.22 mmol), m.p. 123 °C; R_f (1:3; EtOAc:Petroleum ether) 0.26 ; v_{max} (CHCl₃)/cm⁻¹ 1648 (C=O) ; $\delta_{\rm H}$ (300 MHz; CDCl₃) 1.03 (s, 9H, CCH₃), 1.27 (t, *J*= 7.6 Hz, 3H, CH₂CH₃), 2.39 (s, 3H, ArC-CH₃), 2.74 (dq, *J*= 9.5, 7.6 Hz, 2H, CH₂CH₃), 3.30 (s, 3H, NCH₃), 6.18 (bs, 1H, NH), 7.02 (td, *J*= 7.6, 1.5 Hz, 1H, Ar-H), 7.20-7.30 (m, 5H, Ar-H), 8.00 (dd, *J*= 8.1, 1.5 Hz, 1H, Ar-H); $\delta_{\rm C}$ (75MHz; CDCl₃) 14.8 (CH₂CH₃), 18.2 (ArC-CH₃) 24.2 (ArC-CH₂CH₃), 30.2 (C(CH₃)₃), 34.1 (C(CH₃)₃), 35.3 (NCH₃), 123.9, 124.3, 126.4, 127.1, 127.7, 129.2, 129.6 (ArC-H), 137.4, 139.6, 139.0, 139.7, 143.5, 155.0 (*C*=O); m/z (C.I.) 326 (100%, M + H⁺) ; HRMS found: M⁺ 325.2270. C₂₁H₂₈N₂O requires 325.2274.

References:

1. Mido, Y.; Okuno, T. J. Mol. Struc. 1982, 29

- 2. Miyahara, M. Chem. Pharm. Bull. 1986, 1950
- 3. Bull. Soc. Chim. Fr. 1919, 321

Spectra

NMR spectra of **7** were determined out in DMSO at room temperature; the ¹H NMR spectrum of **11e** was determined in d_6 -toluene at -80 °C. All other NMR spectra were determined in CDCl₃ at room temperature. ¹H NMR was carried out at 300 MHz; ¹³C NMR was carried out at 75 MHz.

33

7h – H

7j - H

11e - H

ţ

12h - H

12j - C

12k - C

16a - H

16b - H

16b - C

16e - H

16f - H

16f – C

17b - H

18b - H

